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Promotion Horizon 2020 project (2016-2019) 
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Towards an HVDC grids with the most appropriate, cost 
effective, multi-vendor protection system 
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↗VSC HVDC is receiving massive attention from industry, 
especially for offshore connections and interconnectors 

↗DC grids are seen as a logical evolution 
↗Offering redundancy 

↗Possible cost savings 

↗DC grids require protection 

↗Current VSC HVDC protection: at the AC side 
↗ not a good solution for the future pan-European grid 

 

DC grids and DC grid protection 

03.05.16 5 
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↗to develop a set of functional requirements for various DC grids: 
from small scale to large overlay grids and for a variety of 
system configurations and converter topologies 

↗to analyse a wide range of DC grid protection philosophies on a 
common set of metrics 

↗to identify the best performing methods for the systems under 
study 

↗to develop detailed protection methodologies for the selected 
methods 

↗to develop configurable multi-purpose HVDC protection IEDs to 
enable testing of the methodologies 

↗to investigate the key influencing parameters of protection 
systems on the cost-benefit evaluation 

WP4: develop multi-vendor protection systems 

03.05.16 6 
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↗Protection system: What to protect? 
↗Humans 

↗System  

↗Components 

↗For the AC system: 
↗After single fault, selective protection system clears fault 

↗Backup protection if that fails 

↗Protection operates in 60 – 200 ms 

↗Operated N-1: no single credible fault/contingency causes large 
sustained outage 
↗ Expected behavior at a single line fault 

↗ Expected behavior at busbar fault 

↗ Expected behavior at fault at lower levels (e.g. distribution) 

↗ Fault ride through behavior of wind farm 

↗3 GW / 1.8 GW / … maximum loss of infeed  

What are our expectations of DC grid 
protection? 

03.05.16 7 



© PROMOTioN – Progress on Meshed HVDC Offshore Transmission Networks  

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 691714. 

↗What about the DC grid? 
↗Same as AC? 

↗Which reliability? 

↗Are the limits (delays, power loss,…) the same? 

↗What are relevant faults at the DC side 
↗ Pole to pole? 

↗ Pole to ground? 

↗ Busbar? 

↗What is the accepted behavior at the DC side 

↗AND the connecting AC systems 
↗ Continental Europe, Ireland, offshore wind, offshore load 

↗Do we expect the same for all systems? 
↗ Small --> medium --> large  

What are our expectations of DC grid 
protection? 

03.05.16 8 
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↗Type (a) line protection : impact only on the faulty line 

↗Type (b) line+ protection : impact on the faulty line and on the closest 
MMC converter  

↗Type (c) open grid protection : impact of all the breakers at a bus  

↗Type (d) grid splitting protection : impact only on the faulty zone 

↗Type (e) low-speed HVDC grid protection : impact on the entire grid 

Overview: Fault clearing strategies (zones-
impact) 
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Functional requirements? 

03.05.16 10 

System and components 

constraints 

Expected performance for DC 

grids (small, medium and large) 

• Various DC faults  

Functional requirements 

for DC grids 

• Current technology 

• What is the limit now? 

• What is the limit in 2050? 
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Components of DC grid protection:  
influencing eachother 

03.05.16 11 
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↗Selectivity & speed 
↗E.g., maximum portion of the 

grid which can be disconnected 

↗Maximum time for which grid 
can be disconnected 

↗Backup protection 
↗Lower probability, but higher 

impact 

↗Robustness towards system 
changes 

 

 

System functional requirements lead to 
requirements for protection 

↗Suitable protection 
philosophies 
↗Selective 

↗Partly selective 

↗Non-selective 

↗Suitable fault clearing 
strategies 
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↗Protection algorithms 
↗Speed 

↗Selectivity 

↗Sensitivity 

↗Reliability 

↗Breakers 
↗Speed 

↗ Interruption capability 

↗Energy absorption capability 

↗Fault current limiters 
↗Di/dt … 

Protection requirements lead to requirements 
for protection components 

↗Suitable candidates 
↗Protection algorithms 

↗ Non-unit 

↗ Unit/Pilot 

↗Breakers: Mechanical, 
Hybrid 

↗ Inductors/SFCL/… 



© PROMOTioN – Progress on Meshed HVDC Offshore Transmission Networks  

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 691714. 

• Potential Faults/events: 
• AC faults (single-phase-to-ground, three-phase-to-ground) 

• Outage of a converter 

• DC line faults (pole-to-ground, pole-to-pole) 

• DC busbar faults 

• Potential effects on the AC & DC systems: 
• DC system: overvoltage, under voltage, overcurrent, DC grid 

instability, DC overload 

• AC system: overvoltage, under voltage, overcurrent, AC grid 
instability (transient stability, small signal stability, frequency 
stability), AC overload 

•  what is acceptable? 

Why relevant? Faults occur and they influence 
the total system 
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DC Line (pole-to-ground) fault: example 1 

15 

Test system: 3-terminal bipolar with metallic return DC Power during and after pole-to-ground fault 

Utilizing fast selective DC protection (fault clearing ~5ms): 

 DC system:  

• Possible overload post fault clearing 

 AC system: 

• Very short transients 
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DC Line (pole-to-ground) fault: example 2  

03.05.16 16 

Utilizing AC circuit breaker for fault clearing (fault clearing 2~3 cycles): 

 DC system:  

• Outage of the whole DC system 

• Possible large fault currents depending on grounding configuration 

 AC system: 

• See multiple short-circuit faults once converters are blocked 

• Possible instability 
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DC Line (pole-to-ground) fault: example 3  

03.05.16 17 

Utilizing converters with fault blocking capability: 

 DC system:  

• Outage of the whole DC system 

 AC system: 

• Short interruption 

• Possible instability 

o Asynchronous AC systems 

o Synchronous AC systems 
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HVDC converter outage: influence on ac frequency and 
generator rotor angles 

03.05.16 18 

Simplified representation of ac system: 

• Equivalent synchronous generator (SGeq) with inertia constant H 

• Droop control action is neglected within the considered time frame (0-0.2s) 

• HVDC converter outage = Load step on synchronous generator  
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↗Maximum loss of power infeed and duration: 

 

 

 

 

 

 

 

 

Constraints from synchronous AC Systems 
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↗Maximum temporary power loss and duration 
↗at a node 

↗ to a synchronous zone 

↗ to a control area 

 

↗Voltage support requirement 

Constraints from asynchronous AC Systems 

03.05.16 21 
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↗Point-to-point HVDC offshore links 
↗AC fault ride-through: hundreds ms (e.g. 384 ms for 30% Vremaining GB [1]) 

↗DC faults are protected using AC circuit breakers: 2~3 cycles 

 

 

 

 

 

 

↗Constraints to DC grids: 
↗Fault interruption: within 2 ~3 cycles 

↗Converter DC LVRT capability? 

Constraints from wind farms 

03.05.16 22 

F1

DC 

chopper

F2
ACCBACCB

F2

[1] A. J. Beddard and U. Oj, “Factors Affecting the Reliability of VSC-HVDC for the Connection of 

Offshore Windfarms,” PhD thesis, 2014. 
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↗Converter (for all types of converters):  
↗Udc at the converter terminal 

↗ Normal operation: 90% - 110% 

↗ Minimum voltage and duration for a converter has to stay unblocked: 0.8pu 
hundreds ms? 

↗ Iarm of the converter 
↗ IGBT (maximum instantaneous current limit): 

↗ 2 [pu] on maximum dc value allowed by IGBT 

↗ Future technology: SiC, GaN? 

↗ Diode/thyristors  

↗ Surge withstand capability [kA2t] 

 

Constraints from DC grid components 

03.05.16 23 

DC fault ride through capability 

Udc/Udcn

t

tUV,blk
Umin,blk

100%
110%

90%

When a converter is allowed to be blocked and tripped 
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↗DC Circuit Breakers: constraints to relay speed 
 

 

Constraints from DC grid components 

03.05.16 24 

Energy absorption branch

Auxiliary branch

Main branchRCBCurrent limiter

Imax

tbr,otbr,t tint tc

∆tbr,t ∆tbr,int ∆tbr,rcb

Parameter Unit Typical value 
Foreseeable 
values(2030-
2050) 

Breaker tripping delay [ms] 
Hybrid: 2-3 ms,  

Mechanical: 5-10 

ms 

Fault current 

interruption capability 
[kA] 

Hybrid: 5-10 kA,  

Mechanical: 10-16 

kA 

Energy absorption 

capability 
[MJ] ~ 10 MJ 

Bypass delay [ms]  ? 

Residual current 

interruption capability 
[kA] 0.1 kA 

Maximum current rate 

of rise 
[kA/s] 3-5 kA/s 

Maximum breaker 

surge arrestor voltage 
[pu] 1.5 

Rated voltage [kV] 320 500? 

Structure of a DC circuit breaker 

Fault interruption process 

 Currently collecting inputs for different components 
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↗Cable constraints [3]: 

WP4.1 Investigation and evaluation of fault detection and selectivity methods, towards functional requirements 

 Constraints from DC grid components 

03.05.16 25 

Parameter Unit Typical value 

Foreseea
ble 
values(20
30-2050) 

Remarks 

Lightning impulse 
withstand level 

[pu] 
2,1 (same 
polarity) 

  Lightning impulse withstand level 

Switching impulse 
withstand level 

[pu] 
1,2 (opposite 
polarity) 

  Switching impulse withstand level 

Maximum 
continuous dc 
voltage (applied 
during type and 
routine test) 

[pu] 1,85   
Maximum continuous dc voltage (applied 
during type and routine test  
for 15minutes) 

Thermal overload 
limit 

[pu] ? 

[3] Cigre WG B1.32 - Recommendations for testing DC extruded cable systems for power transmission at a rated 

voltage up to 500 kV 

t

U0

2.1 [pu]

t

U0

-1.2 [pu]
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• Stress on AC and DC 
system 

• AC side system fault ride 
through capability 

• DC side voltage capability 

• Chicken and egg problem: 
DC grid design depends on 
what we expect from its 
operations and operational 
expectations depend on 
the system in place 

• What do we want as 
behavior? What is 
acceptable? 

 

Towards Functional Requirements of DC Grids 

26 

∆P

t

Pmax

5ms Few 
hundreds ms

Allowed power outage – time requirement 
Pmax: allowed maximum permanent loss 

Allowed voltage deviations 
(source: cigre B4-56) 
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Questions? 

27 
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