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Introduction



Specifications of DC grids:

• Low impedance of transmission lines (higher short circuit current)

• Faster dynamics (small time delays play significant role in system dynamic)

• Lower tolerance to faulty situations

• Higher and faster interaction between converters

• The grid control systems must satisfy grid code requirements

• It connects different system operators who may not the same control paradigm

• Control paradigm depends on wind farm production
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Research Questions Related to DC Grids:

• How DC and AC systems interact with each other?

• How this interaction is analysed? (quantified and qualified)

• How droop controllers impact the system stability?

• Can voltage and frequency droop be implemented on one converter?

• Can conventional tools be used for DC grid stability analysis?

• more possible questions!
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Feedback Control System Model

and its Benefits



An appropriate model (a tool) to answer the research questions:

Modeling entire system as a linear, time invariant, multi-input multi-output Feedback Control

System (FCS)

+_
C J

The FCS model is a basic concept in control engineering!

J and C are respectively plant (Jacobian) and controller system model in Laplas domain.
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Why FSC model?

• System dynamic can be studied in both time and frequency domain.

• Provides more insight into system dynamics.

• An appropriate model for controller design (Many controller design methods are based on

the open loop transfer function).

• The Grid Code Requirements can be taken into account when the limits for the system

stability and performance are determined.

• The interaction between ac and dc systems, and also between converters can be quantified

and qualified.
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Example 1: Stability of Current Control Loop of a Grid Connected VSC

A VSC connected to strong DC and AC grids at both sides.

• Does this control loop ever go to

instability?

• If yes, what is the cause?

• And how it can be identified and

taken into account in controller

design?
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Example 1: Stability of Current Control Loop of a Grid Connected VSC

• System becomes unstable when the controller

gain has a large value.

• Transport and sampling delay caused by the

PWM process and digital controller

sampling/computation can lead to instability

[Holmes et al., 2009].

• With modal analysis stability and its cause is

not identified.
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Example 1: Stability of Current Control Loop of a Grid Connected VSC

For stability analysis the frequency response of FCS open loop model is used.
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JCCCCC
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JCC is the AC system model and CCC current controller model.

8



Example 1: Stability of Current Control Loop of a Grid Connected VSC

The frequency response of the system indicates that the system is unstable!
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• The negative gain margin in open-loop transfer function indicate the instability.

• How to detect the cause of instability?
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Example 1: Stability of Current Control Loop of a Grid Connected VSC

The frequency response of the plant model with and without time delay!
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Time delay changes the phase of the plant model, J, at high frequency.
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Example 1: Stability of Current Control Loop of a Grid Connected VSC

The controller must have low gain at high frequency.
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In controller design the time delay must be taken into account!

11



Example 2: Stability of Power Control Loop of a Weak Grid Connected VSC

A VSC connected to a weak AC grid.
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The system is unstable when AC grid is weak!
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Example 2: Stability of Power Control Loop of a Weak Grid Connected VSC

The FCS model for power control loop!
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JPQ is the plant model ( AC system and current controller model).

CPQ is the power loop controller model ( usually a pair of PI controller).
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Example 2: Stability of Power Control Loop of a Weak Grid Connected VSC

The accessibility of the plant, JPQ , model help to understand the cause of instability!
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There are severe interactions between P and Q control loops when AC grid is weak.

The plant is ill-condition at low frequencies!
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Developing Feedback Control

System Model for an HVDC Grid



FCS Model of an HVDC Grid:

One of the possible DC grid topologies considered for North Sea

Con1

Con2

Coff1

Coff2
Onshore Offshore

==

==

==

==
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FCS Model of an HVDC Grid:

FCS Model for Converters Current Control Loop:

+_
JCCCCC

• The model is block-diagonal i.e. DC grid dynamic can be neglected and CC can be design

independently for each converter!

• Each AC system is represented by a Thevenin equivalent.
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FCS Model of an HVDC Grid:

FSC model for Power (Active and Reactive) and Voltage (AC and DC) Contrl

CPV
JPV+

_ +_
JCCCCC JDC

PVREF

• The DC grid dynamic, JDC , is included in the plant model, JPV .

• Each AC system is represented by a Thevenin equivalent (detailed model can be regarded

of a fast dynamic device like FACTS devices is in nearby).
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FCS Model of an HVDC Grid:

FSC model for Direct Voltage Droop Control

CPV
JPV

+_ +_
JCCCCC

+_
RV

JV

JDC

PVREF

• The direct voltage controller gain, RV , is the inverse of power-voltage droop!
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FCS Model of an HVDC Grid:

FSC model for Providing Frequency Support to Onshore Grids

CPV
JPV

+_ +_
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+_
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+_
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JF
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PVREFVREF

• Electromechanical dynamics, CMC , of onshore AC systems are included in the plant model,

JF .

• There are different schemes of implementing frequency support control (with or without

communication, converter pairing, etc.).

19



FCS Model of an HVDC Grid:

FSC model for Providing Frequency Support to Onshore Grids

CPV
JPV

+_ +_
JCCCCC

+_
RV

JV

+_
RF CMC

JF

JDC

PVREFVREF

• Electromechanical dynamics, CMC , of onshore AC systems are included in the plant model,

JF .

• There are different schemes of implementing frequency support control (with or without

communication, converter pairing, etc.).

19



FCS Model of an HVDC Grid:

Simplification:

When studying a slow dynamic phenomenon, faster dynamic control loops can be simplified.

E.g., in frequency support modeling the converter current control loop can be ignored or

simplified by a first order dynamic as:

I = TCC Iref , TCC =
ωc

s + ωc
, ωc ≈ 1000→ 5000 rad/sec

CPV
JPV

+_ +_
JCCCCC

+_
RV

JV

+_
RF CMC

JF

JDC

PVREFVREF
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Simulation Results



Simulation Results:

Considerations:

• Dynamics of wind farms are not included (YET) in the FCS model.

• Both of onshore converters participate in direct voltage control.

• Frequency of onshore system one is supported by first offshore wind farm through a

communication link.

Con1

Con2

Coff1

Coff2
Onshore Offshore

==

==

==

==
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Simulation Results:

Frequency support from offshore one to onshore one

There is 100 ms communication time delay in control loop!
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Simulation Results:

Frequency support from offshore one (C3) to onshore one (C1)

There is 100 ms communication time delay in control loop!
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Simulation Results:

Point-to-point connection between Con.1 and Con.3
————————————

Frequency control creates more

interactions between converters.

Some overshoots in active power

of Con3 must be limited by a

proper controllers/limiters.
0

1

2

T
o

: 
V

D
C

1

From: Vdcref1

-1

0

1

T
o

: 
W

1

0 0.5
-1

0

1

T
o

: 
P

3

From: Pmech1

0 0.5

From: Wref1

0 0.5

From: Pref3

0 0.5

Time (seconds)

With frequency control; Without frequency control
24



Simulation Results:

Point-to-point connection between Con.1 and Con.3

0 0.2 0.4 0.6 0.8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

T
o

: 
W

1

From: Vdcref1

Strong AC system

Weak AC system

0 0.2 0.4 0.6 0.8

From: Wref1

Time (seconds)

10
0

10
2

-70

-60

-50

-40

-30

-20

-10

0

10

T
o

: 
W

1

From: Vdcref1

10
0

10
2

From: Wref1

Frequency  (rad/s)

M
a

g
n

it
u

d
e

 (
d

B
)

25



Simulation Results:

Meshed HVDC grid with master-slave control: Con.1 in onshore side controls the

direct voltage.

——————————-

In this control scheme the

Con2 and Con4 have not

been impacted by frequency

control.
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Simulation Results:

Meshed HVDC grid with voltage droop control: onshore converters (Con1 and Con2)

control the direct voltage.

——————————-

With communication based

frequency control the

operation of non-relevant

converters is not impacted

significantly!
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Conclusions



Conclusions:

• FCS model is an appropriate tool for dealing with time delays in fast dynamic systems.

• Interactions between different inputs and outputs can be quantified.

• Frequency and voltage droop controls create complicated interactions between converters
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Conclusions:

More inputs to FCS model:

• Wind turbine model

• Communication less method for frequency support

• Offshore wind farm with diode rectifier

• Detailed model of AC systems to study power oscillation damping and complicated

interactions between AC and DC grids

29



Conclusions:

More inputs to FCS model:

• Wind turbine model

• Communication less method for frequency support

• Offshore wind farm with diode rectifier

• Detailed model of AC systems to study power oscillation damping and complicated

interactions between AC and DC grids

29



Conclusions:

More inputs to FCS model:

• Wind turbine model

• Communication less method for frequency support

• Offshore wind farm with diode rectifier

• Detailed model of AC systems to study power oscillation damping and complicated

interactions between AC and DC grids

29



Conclusions:

More inputs to FCS model:

• Wind turbine model

• Communication less method for frequency support

• Offshore wind farm with diode rectifier

• Detailed model of AC systems to study power oscillation damping and complicated

interactions between AC and DC grids

29



Questions?
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