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DCCB Topology
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HVDC circuit breaker with 80 kV 16 kA capability

HVDC Mechanical Circuit Breaker Diagram
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B2 Current zero creation
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e A current zero is created by superimposing high frequency
| (Iﬂ current on DC current charged by the capacitor bank.
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MOSA energy dissipation

After current injection, residual current through vacuum circuit breaker is

ON

7, commutated to the current injection branch, which charges the capacitor.
| ‘Iﬁ The voltage across the vacuum interrupter is quickly recovered and surpassed
N7 beyond the nominal system voltage.

, Then the transient recovery voltage is clipped by the MOSA restriction voltage
% E (typically about 1.5 pu of the rated voltage in accordance with V-l characteristic).
O .. Yoltage restriction by MOSA __
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High frequency interruption capability with Vacuum

High frequency interruption capability depends on the contact gap of vacuum
interrupter and its conditions such as interrupting currents (around 16 kA and
above).

The current injection scheme with capacitors and inductors controls the
amplitude of reverse current and its frequency, and ensure successful interruption
at current zero.
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Rapid interruption cannot allow vacuum interrupters to fully open at current injection.




HVDC circuit breaker interrupting tests
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Rated DC Current Interruption at DNV-GL KEMA HPL
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Rated DC Current Interruption at DNV-GL KEMA HPL
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g Multi-break DCCB configuration (A)

§
7,37 Lump current injection and MOSA design
7)) |
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Current injection branch is common for multi-break interrupter units
Current injection sequence for the charged capacitor is relatively simple
s§‘




g Multi-break DCCB configuration (B)

| & Module current injection and MOSA deS|gn
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Each interrupter unit has their own current injection branch and MOSA.
This configuration has design flexibility for higher voltage levels.
For example, four series connection of 80 kV breaker unit can configure 320 kV




== Comparison of Multi-break DCCB configuration

)
M%)
o
L. U0)
Lt Configuration (A), Configuration (B),
{ % “Lump design” “Module design”
3 @ Capacitor charging sequence Simple Complicated
1 Design flexibility for higher voltage levels Less flexible More flexible
\ 5 Impact of mechanical switch operation Small Large
N variation
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DC circuit breaker prototype of 320 kV 16 kA capability
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smaller C, (grounding capacitor)

= Voltage distribution of multi-break DC circuit breakers
@) Uniform voltage distribution is required for Multi-break EHV DC circuit breakers
2 » C,: Grading capacitor
‘I.ﬁ N - Mmos4| C.: The stray capacitance to earth.
v V, - Vy -
! \\ m R I Interrupter A\ G L, Interrupter B L * [ * [
N Y A T T e =F < T I 1T 1l
. o s L R | S & s
‘ L B L % G L G\ T 1
“BE IZ o LA €| &, ‘ C,
3 G . Simulation circuit for voltage distribution Capacitance for multi-break
&0 1.16 S Simulation parameters
: i~ gi‘z‘ iiggfc:c‘:‘ft:j” C. [uF]: Stray assumed
o :;';SD 1:10 e 300pF - Calculated Ce [pF] 300! 50
. C, [pF]: Variable 500-5000
- N e R, [MQ]: 1
B S 104
102 —e— = = Theoretical calculation
1 o 1000 2000 . 3000 4000 5000 6000 Va: vb = (Cg ¥ Ce) : Cg
Grading Capacitance (Cg) [pF]
R\ Depending on circuit breaker design, uniform voltage distribution is expected in case of



DC Interruption tests with single-break and double-breaks

Y Z& «
@) DC circuit breakers
e |
‘ m 3 20 | B 20 1 20
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, @0 Case 1 Case 2 Case 3
SN Double-break DC circuit breakers show better successful thermal and dielectric interruption
(@ N performance with shorter arcing time (shorter contact gap) compared with the single-break.
SN
B\ Case | Testcurrent | Number ofthe | Arcing Time Success or failure
No. (kA) ELE (Contact gap) Thermal Dielectric
i Standard
1 16 (100%) Success Success
Shorter :
g\ 2 16 1 (70%) Success Failure
3 16 2 PO, Success Success

\ (70% x 2)




